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Robust view selection in multiview stereo
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A robust view selection algorithm for multiview stereo matching is presented. Different from the existent
view selection algorithms which pick only the believable views for matching, this method assigns an adaptive
weight to each target view based on the dissimilarity between it and the reference view. So it can utilize
the information of all views more sufficiently. The algorithm has been evaluated with different real images
to demonstrate its robustness.
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Multiview stereo is an important part of computer
vision[1,2]. Differing with binocular stereo, there are
three or more images which can be used for matching
in multiview vision[3−7]. So how to use the information
of different target images appropriately is very important
for handling occlusion and improving matching precision.
Kang et al. proposed a temporal selection method[8] to
handle occlusion. Rather than summing the matching
errors over all the frames, they picked only the views
where the pixels are visible. On the basis of temporal
selection, Sun et al. proposed an adaptive convolution
kernel[9] to reach the balance between keeping more in-
formation and reducing ambiguities. Their methods look
more efficient in occlusion handling than temporal selec-
tion. By studying their methods, we can find that for
each pixel’s matching, they first divide all target views
into two parts: believable views and unbelievable views.
The views which have lowest dissimilarities with the ref-
erence view are picked as believable views and the other
views are rejected as unbelievable views. So for each

pixel, only a part of frames which are regarded as be-
lievable views can be used for its matching. If the pixel
is in the occlusion region, this operation is appropriate.
But if the pixel is visible in all views, using the meth-
ods in Refs. [8] and [9] will lose some useful information
because some useable views are rejected as unbelievable
views due to their little bigger dissimilarities. So both
algorithms can handle occlusion in multiview stereo, but
they are weak in some regions which are visible in all
the views. Therefore, we propose a new view selection
method. Instead of picking some believable views, the
method assigns an adaptive weight for each view based
on the dissimilarity between it and the reference view.

In a multiview stereo, the observation is a collection
of images {Ik, k = 0, · · ·, K}. It is assumed that Ir is
the reference view, F (s, ds, Ir, Ik) is the matching cost
function of pixel s with disparity ds between Ir and Ik.
In our implementation, we use Birchfield and Tomasi’s
pixel dissimilarity measure (PDM)[10]. So we can define
two kinds of weights for a certain target view Ik:

wak =
exp(−α−1F (s, ds, Ir, Ik))

r−1
∑

i=0

exp(−α−1F (s, ds, Ir, Ii)) +
K
∑

i=r+1

exp(−α−1F (s, ds, Ir, Ii))

, (1)

where α is parameter determined empirically, and

wsk =
exp(−α−1Fs(s, ds, Ir , Ik))

r−1
∑

i=0

exp(−α−1Fs(s, ds, Ir, Ii)) +
K
∑

i=r+1

exp(−α−1Fs(s, ds, Ir, Ii))

, (2)

where Fs(s, ds, Ir, Ik) =
P

ds
F (s,ds,Ir ,Ik)

Nd

, Nd is the number of disparity d in predefined search range. Like Ref. [9], to

reach the balance between keeping more information and reducing ambiguities, we also define an adaptive weight as

wk =

{

wak min {F−, F+} ≥ t max {F−, F+}
wsk min {F−, F+} < t max {F−, F+}

, (3)

where F− =
r−1
∑

k=0

Fs(s, ds, Ir , Ik) and F+ =
K
∑

k=r+1

Fs(s, ds, Ir, Ik), t (0 < t < 1) is a winner threshold. If there is an

obvious winner between F− and F+, wsk is selected to reduce the ambiguity. Otherwise, wak is picked to keep more
information.

So the final matching cost P (s, ds) of the pixel s with disparity ds can be expressed as
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P (s, ds) =

r−1
∑

k=0

wkF (s, ds, Ir, Ik)

+

K
∑

k=r+1

wkF (s, ds, Ir, Ik). (4)

From the above description, we can see that if the pixel
under matching is in the occlusion region, our method
will assign a negligible weight to the view where the pixel
is invisible. So only the views where the pixel is visible
will play a crucial role in stereo matching. Furthermore,
if the pixel under matching is visible in all views, the
proposed method will assign an almost equal weight to
each view. Then all views can be utilized to produce a
reliable matching result.

We use the image sequences of Tsukuba (2nd, 3rd, and
4th frames), Venus (1st, 3rd, and 5th frames), Moe-
bius (1st, 2nd, and 3rd frames), and Reindeer (1st,
2nd, and 3rd frames) as our test data. They can be
downloaded from Middlebury website[11]. When com-
paring our method with other two methods, all modules
of stereo matching algorithm are uniform except the
view selection module (adaptive support-weight[12] for
window selection, PDM for dissimilarity measure, and
winner-takes-all (WTA) for disparity selection). The pa-
rameters set across both sequences are α = 5 and t = 0.5.

Figure 1(a) is the reference image of the Tsukuba se-
quence. Points A, B, C, and D are four typical points in
stereo matching. Points A, B, and C are semiocclusion
points and point D is visible in all views. Each column
of Fig. 1(b) corresponds to A, B, C, and D, respec-
tively. The first row shows the distribution of matching
cost, where the horizontal and vertical coordinates are

Fig. 1. Comparison of three methods with Tsukuba sequence.
(a) Reference image; (b) comparison of three methods.

Table 1. Disparities of Points A, B, C , and D

A B C D

True Disparity 8 5 8 5

Temporal Selection 8 5 10 14

Sun’s Method 8 5 8 14

Our Method 8 5 8 5

disparity and matching cost F (s, ds, Ir , Ik), the dotted
line is the dissimilarity F (s, ds, Ir, Ir−1) between the
left view and the reference view and the solid line is
the dissimilarity F (s, ds, Ir, Ir+1) between the right view
and the reference view. The second, third, and fourth
rows of Fig. 1(b) show the distribution of final matching
costs which are computed by temporal selection[8], Sun’s
method[9], and our method, respectively, the horizontal
and vertical coordinates are disparity and final matching
cost P (s, ds).

Table 1 shows the true disparities of the points A, B,
C, and D and the disparities worked out by the WTA
strategy based on the final matching costs in Fig. 1(b).
From Table 1 and Fig. 1(b), we can find that for points
A and B, all three methods can acquire right disparities.
For the point C, Sun’s method and our method can ob-
tain a right disparity by using an adaptive strategy as
Eq. (3) while the temporal selection method fails. For
the point D which is visible in all views, temporal se-
lection and Sun’s method are invalid to acquire a right
disparity because of their insufficient usage of all target
views’ information. Our method, however, also produces
a right result because it can use the information of all
views more sufficiently.

Figure 2 shows the reference image and matching re-
sults of the Venus sequence. When comparing the re-
sults are obtained by temporal selection, Sun’s method,
and our method, we find that fewer than 10% pixels in
the disparity maps change. However, many regions in
Figs. 2(b) and (c) (some of them are marked by squares)
where inaccurate results are produced because of the in-
sufficient usage of all views’ information are meliorated
by our method, as shown in Fig. 2(d).

Fig. 2. Reference image and matching results of Venus se-
quence. (a) Reference image; (b) result by temporal selection;
(c) result by Sun’s method; (d) our result.
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Fig. 3. Reference image and matching results of Moebius se-
quence. (a) Reference image; (b) result by temporal selection;
(c) result by Sun’s method; (d) our result.

Fig. 4. Reference image and matching results of Reindeer se-
quence. (a) Reference image; (b) result by temporal selection;
(c) result by Sun’s method; (d) our result.

The matching results of Meobius and Reindeer se-
quences are shown in Figs. 3 and 4, respectively. Sim-
ilar to the result of the Venus sequence, some inaccurate

pixels in temporal selection and Sun’s method are re-
vised with our method. Some of them are also marked
by squares.

In conclusion, a new view selection method which as-
signs an adaptive weight for each view according to the
dissimilarity between it and the reference view has been
proposed. Experimental results demonstrate that the
method can utilize the information of all views more
sufficiently. It is robust for view selection.

This work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 60527001.
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